Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1213252, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663268

RESUMO

Anxiety is a symptom of various mental disorders, including depression. Severe anxiety can significantly affect the quality of life. Hesperidin (Hes), a flavonoid found in the peel of citrus fruits, reportedly has various functional properties, one of which is its ability to relieve acute and chronic stress. However, Hes is insoluble in water, resulting in a low absorption rate in the body and low bioavailability. Glucosyl hesperidin (GHes) is produced by adding one glucose molecule to hesperidin. Its water solubility is significantly higher than that of Hes, which is expected to improve its absorption into the body and enhance its effects. However, its efficacy in alleviating anxiety has not yet been investigated. Therefore, in this study, the anxiolytic effects of GHes were examined in a zebrafish model of anxiety. Long-term administration of diets supplemented with GHes did not cause any toxicity in the zebrafish. In the novel tank test, zebrafish in the control condition exhibited an anxious behavior called freezing, which was significantly suppressed in GHes-fed zebrafish. In the black-white preference test, which also induces visual stress, GHes-fed zebrafish showed significantly increased swimming time in the white side area. Furthermore, in tactile (low water-level stress) and olfactory-mediated stress (alarm substance administration test) tests, GHes suppressed anxious behavior, and these effects were stronger than those of Hes. Increased noradrenaline levels in the brain generally cause freezing; however, in zebrafish treated with GHes, the amount of noradrenaline after stress was lower than that in the control group. Activation of c-fos/ERK/Th, which is upstream of the noradrenaline synthesis pathway, was also suppressed, while activation of the CREB/BDNF system, which is vital for neuroprotective effects, was significantly increased. These results indicate that GHes has a more potent anxiolytic effect than Hes in vivo, which may have potential applications in drug discovery and functional food development.

2.
Front Pharmacol ; 14: 1168229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324500

RESUMO

Ninjinyoeito, Hochuekkito, and Juzentaihoto are the three types of Kampo-hozai used to support the treatment of various diseases by energizing patients through improved mental health. While Kampo-hozais are clinically used to improve mental energy decline, a comparison between their effects on neuropsychiatric symptoms like anxiety and sociability and the strength of their effects has not been conducted. Therefore, this study compared the effects of Ninjinyoeito, Hochuekkito, and Juzentaihoto on psychiatric symptoms using neuropeptide Y knockout (NPY-KO) zebrafish, a suitable animal model for anxiety and low sociability. Neuropeptide Y knockout zebrafish were fed a Ninjinyoeito, Hochuekkito, or Juzentaihoto-supplemented diet for 4 days. Then, sociability was analyzed using a three-Chambers test and anxiety-like behavior was evaluated using the cold stress and novel tank tests. The results showed that Ninjinyoeito treatment improved the low sociability of neuropeptide Y knockout, while Hochuekkito and Juzentaihoto did not. Neuropeptide Y knockout exhibited anxiety-like behaviors, such as freezing and swimming in the wall area under cold stress, but Ninjinyoeito treatment improved these behaviors. However, these anxiety-like behaviors were not improved by Hochuekkito and Juzentaihoto. Ninjinyoeito treatment also improved anxiety-like behaviors of neuropeptide Y knockout in the novel tank test. However, no improvement was shown in the Hochuekkito and Juzentaihoto groups. This trend was also confirmed in the low water stress test using wild-type zebrafish. This study exhibits that among the three types of Kampo-hozai, Ninjinyoeito is the most effective in psychiatric disorders associated with anxiety and low sociability.

3.
Front Pharmacol ; 13: 905711, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034826

RESUMO

Sociability is an essential component of the linkage structure in human and other vertebrate communication. Low sociability is defined as a poor social approach, including social withdrawal and apathy, and is implicated in a variety of psychiatric disorders. Ninjinyoeito (NYT), a traditional Japanese herbal medicine, has been used in the medical field. This study aimed to determine the effect of NYT on low sociality in NPY-KO zebrafish. NPY-KO zebrafish were fed a 3% NYT-supplemented diet for 4 days and subjected to behavioral tests. In the mirror test, NPY-KO zebrafish fed a control diet showed avoidance behavior toward their mirror counterparts. In contrast, the treatment of NPY-KO zebrafish with NYT significantly increased their interaction with their counterparts in the mirror. In addition, a 3-chambers test was conducted to confirm the effect of NYT on the low sociality of NPY-KO zebrafish. NPY-KO zebrafish fed the control diet showed less interaction with fish chambers, while NYT treatment increased the interaction. Phosphorylation of ERK, a marker of neuronal activity, was significantly reduced in the whole brain of NYT-fed NPY-KO zebrafish, compared to the control diet. NYT treatment significantly suppressed hypothalamic-pituitary-adrenal-related genes (gr, pomc, and crh) and sympathetic-adrenal-medullary-related genes (th1, th2, and cck) in NPY-KO zebrafish. NYT administration significantly reduced mRNA levels of gad1b compared to the control diet, suggesting the involvement of GABAergic neurons in NYT-induced improvement of low sociability. Furthermore, the expression of CREB was suppressed when NPY-KO zebrafish were fed NYT. Next, we attempted to identify the effective herb responsible for the NYT-induced improvement of low sociability. NPY-KO zebrafish were fed an experimental diet containing the target herb for 4 days, and its effect on sociability was evaluated using the 3-chambers test. Results showed that Cinnamon Bark and Polygala Root treatments significantly increased time spent in the fish tank area compared to the control diet, while the other 10 herbs did not. We confirmed that these two herbs suppressed the activity of HPA-, SAM-, and GABAergic neurons, as well as NYT-treated zebrafish, accompanied by downregulation of CREB signaling. This study suggests the potential use of NYT as a drug for sociability disorders.

4.
ACS Appl Bio Mater ; 5(5): 2377-2388, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35506864

RESUMO

Niemann-Pick disease type C (NPC) is characterized by the accumulation of glycolipids such as free cholesterol, sphingomyelin, and gangliosides in late endosomes/lysosomes (endolysosomes) due to abnormalities in the membrane proteins NPC1 or NPC2. The main symptoms of NPC caused by free cholesterol accumulation in various tissues vary depending on the time of onset, but hepatosplenomegaly and neurological symptoms accompanied by decreased motor, cognitive, and mental functions are observed in all age groups. However, the efficacy of NPC treatment remains limited. Herein, we have fabricated lactose-appended hydroxypropyl-ß-cyclodextrin (Lac-HPßCD) and evaluated its lowering effects on cholesterol accumulation in NPC model mice. We reveal that Lac-HPßCD lowers cholesterol accumulation in the liver and spleen by reducing the amount of free cholesterol. Moreover, Lac-HPßCD reduces the amount of free cholesterol in the cerebrum and slightly alleviates motor dysfunction. These results suggest that Lac-HPßCD has potential for the treatment of NPC.


Assuntos
Doença de Niemann-Pick Tipo C , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Animais , Colesterol/metabolismo , Endossomos/metabolismo , Lactose/metabolismo , Camundongos , Doença de Niemann-Pick Tipo C/tratamento farmacológico
5.
J Control Release ; 328: 722-735, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33002523

RESUMO

The blood-brain barrier (BBB) prevents the permeability of drugs into the brain, and as such limits the management of various brain diseases. To overcome this barrier, drug-encapsulating nanoparticles or vesicles, drug conjugates, and other types of drug delivery systems (DDSs) have been developed. However, the brain-targeting ability of nanoparticles or vesicles is still insufficient. Recently, among the various brain-targeting ligands previously studied for facilitating transcellular BBB transport, several sugar-appended nanocarriers for brain delivery were identified. Meanwhile, cyclodextrins (CyDs) have been used as nanocarriers for drug delivery since they can encapsulate hydrophobic compounds with high biocompatibility. Therefore, in this study, we created various sugar-appended ß-cyclodextrins (ß-CyDs) to discover novel brain-targeting ligands. As a result, of the six sugar-appended CyDs, lactose-appended ß-CyD (Lac-ß-CyD) showed greater cellular uptake in hCMEC/D3 cells, human brain microvascular endothelial cells, than other sugar-appended ß-CyDs did. In addition, the permeability of Lac-ß-CyD within the in vitro human BBB model was greater than that of other sugar-appended ß-CyDs. Moreover, Lac-ß-CyD significantly accumulated in the mouse brain after intravenous administration. Thus, Lac-ß-CyD efficiently facilitated the accumulation of the model drug into the mouse brain. These findings suggest that Lac-ß-CyD has the potential to be a novel carrier for drugs across the BBB.


Assuntos
Ciclodextrinas , beta-Ciclodextrinas , Encéfalo , Células Endoteliais , Lactose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...